
DR
AF
T

Unlocking AI Potential: Navigating the
Challenges and Opportunities of Diverse
Hardware Accelerators
David Edelsohn, AI Alliance, IBM
Andrew Richards, UXL Foundation
Michael Wong, UXL Foundation, Khronos, ISOCPP, RISC-V
(co-authors from UXL Foundation, LFAI & Data)
Thanks to AMD, Meta, Modular

Introduction
The artificial intelligence (AI) landscape is experiencing an unprecedented surge in
innovation, particularly in the realm of AI accelerator hardware. These accelerators,
designed to significantly speed up AI computations, are the engines behind today's AI
breakthroughs, powering everything from natural language processing to computer
vision tasks, generating songs or movies to driving cars. However, the rapid proliferation
of AI hardware accelerators, each with its own unique architecture and capabilities, has
given rise to a complex ecosystem. This complexity is further magnified by the diversity
of AI frameworks, such as PyTorch, JAX, TensorFlow, PaddlePaddle, Pallas, and Triton,
each offering distinct advantages and designed with specific use cases in mind.

The convergence of cutting-edge AI hardware and sophisticated software frameworks is
where the true potential of AI is unleashed. It is at this intersection where
groundbreaking advancements are made, enabling the development of more powerful,
efficient, and intelligent AI systems. However, this junction also presents significant
challenges for developers and researchers, who must navigate the intricate web of
compatibility, performance optimization, and integration issues that arise when working
with disparate hardware and software components.

This comprehensive review aims to demystify the complexities of the AI ecosystem,
providing a clear and in-depth exploration of the interactions between various AI
accelerators and frameworks. By examining the challenges posed by this rapidly
evolving landscape and presenting strategies to effectively navigate its intricacies, this
document serves as an invaluable resource for developers, researchers, and
decision-makers alike. Whether you are a seasoned AI practitioner or a newcomer to
the field, this guide will equip you with the knowledge and insights needed to harness

DR
AF
T

the full potential of AI hardware and software, driving innovation and progress in this
transformative domain.

Motivation
The increasing use of Artificial Intelligence, Deep Learning, Foundation Models, and
Machine Learning throughout a wide range of tasks drives a wide range of requirements
from both hardware and software. At one end of the spectrum, the training of
large-scale models for natural language processing, self-driving vehicles, and
generative AI demands immense computational resources. These tasks often require
clusters of specialized hardware to process the vast number of calculations within a
reasonable timeframe. On the other hand, the inference of these models, while less
computationally intensive compared to training, can still pose challenges when deployed
at scale, requiring a different mix of hardware and software optimizations to ensure
efficient and responsive performance.

Moving along the spectrum, simpler AI models designed for applications such as fraud
detection may have lower computational demands but often come with strict latency and
throughput constraints. As we shift towards the edge of the network, AI deployments on
self-driving cars, mobile devices, and smart appliances introduce additional
requirements for power efficiency and real-time processing. To address these
challenges, specialized AI chips with lower power consumption and dedicated AI
processing capabilities have emerged as crucial components in edge computing
scenarios.

At the extreme end of the spectrum, TinyML focuses on running AI models on devices
with severely limited resources, such as wearables and sensor nodes. In these cases,
specialized microcontrollers with built-in AI capabilities play a vital role in enabling basic
AI tasks while maintaining minimal power consumption and form factor.

The challenge for vendors, software developers, and AI application developers lies in
developing and utilizing common frameworks that can scale AI models across this
diverse range of use cases, deployment environments, and hardware platforms.
Adaptability is key for AI frameworks to effectively leverage the unique capabilities of
each AI accelerator and hardware configuration, ultimately maximizing performance and
efficiency for every AI application.

This guide aims to explore the strategies and solutions for navigating these
complexities.

DR
AF
T

Introduction to AI Hardware Accelerators
AI accelerators have become pivotal in the modern AI landscape due to their
specialized computational capabilities, designed to speed up artificial intelligence (AI)
applications, including deep learning, machine learning, and data processing tasks.
These accelerators perform numerically intensive computations at an unprecedented
scale, allowing for rapid training and inference phases of AI models. The significance of
AI accelerators lies in their ability to handle vast amounts of data and complex
computations efficiently, reducing the time and energy consumption associated with
traditional computing methods. This optimization unlocks new possibilities in AI
development, enabling more sophisticated and accurate AI models, which are essential
for advancing technologies in fields such as autonomous vehicles, healthcare, finance,
entertainment, and natural language processing.

In the realm of AI accelerator hardware, key players include Graphics Processing Units
(GPUs), Tensor Processing Units (TPUs), NPUs (Neural Processing Units),
Field-Programmable Gate Arrays (FPGAs), Digital Signal Processors (DSPs), and
Application-Specific Integrated Circuits (ASICs). GPUs, originally designed for rendering
graphics, have been widely adopted for AI due to their high throughput and ability to
handle parallel tasks. TPUs, developed by Google, are specifically tailored for
TensorFlow operations, offering optimized performance for deep learning tasks. NPUs
are specialized for neural network computations, often embedded in smartphones and
IoT devices for on-device AI. FPGAs present a flexible architecture, allowing for
customization to specific computational needs, making them suitable for prototyping and
adaptive algorithms. ASICs are custom-designed for a particular use case, offering the
highest efficiency and performance for specific AI tasks, but lack the versatility of GPUs
and FPGAs.

AI accelerators play a crucial role in enhancing the performance of AI models by
significantly reducing computation time and increasing efficiency. This improvement is
critical for training complex models with billions of parameters, a common requirement
in today's AI challenges. By offloading heavy computational tasks to accelerators,
developers can achieve higher throughput and lower latency in both training and
inference phases. This enables more iterative experimentation, quicker model
development, and the deployment of more advanced AI applications across various
industries. Essentially, AI accelerators are the backbone that supports the rapid growth
and scalability of AI technologies.

AI frameworks are the software foundations driving innovation in the AI field, providing
developers with the tools and libraries needed to design, train, and deploy AI models.
Leading AI frameworks include PyTorch, JAX, TensorFlow, Keras, Apache MXNet,

DR
AF
T

Caffe, Chainer, Theano, Microsoft Cognitive Toolkit (CNTK), DL4J, PaddlePaddle,
MindSpore, Pallas, and Triton. PyTorch, known for its dynamic computational graph and
user-friendly interface, is favored for research and prototyping. JAX excels in
high-performance numerical computing and machine learning research with its
automatic differentiation and GPU/TPU acceleration. TensorFlow, developed by Google,
offers a comprehensive ecosystem for developing and training ML models at scale, with
strong support for TPUs and deployment. Keras provides a high-level API for building
and training deep learning models and acts as an interface for TensorFlow. Apache
MXNet offers flexibility and efficiency for deep learning. Caffe, developed by the
Berkeley Vision and Learning Center, is known for its speed and modularity. Chainer is
praised for its flexibility in enabling fast implementation of research ideas. Theano
provides efficient definition, optimization, and evaluation of mathematical expressions.
Microsoft Cognitive Toolkit (CNTK) supports commercial-grade distributed deep
learning. DL4J, designed for business environments, supports distributed GPUs and
CPUs. PaddlePaddle, developed by Baidu, emphasizes ease of use, scalability, and
efficiency. MindSpore, by Huawei, offers comprehensive AI development and
deployment capabilities. Pallas focuses on high-performance computing on GPUs,
emphasizing efficiency and speed. Triton simplifies writing highly efficient GPU code,
democratizing access to custom high-performance computations.

Each framework offers unique features and caters to different use cases. PyTorch is
renowned for its flexibility and ease of use, making it ideal for academics and
researchers focused on developing novel AI models. JAX's ability to automatically
differentiate through Python and NumPy code is particularly useful for scientists and
researchers working on complex simulations and models. TensorFlow’s extensive
community and robust tooling make it suitable for industrial applications requiring
scalability and production readiness. Pallas, with its focus on maximizing GPU
utilization, is well-suited for high-performance tasks that require extreme computational
efficiency. Triton, offering an approachable way to write custom GPU kernels, appeals to
developers needing to optimize specific operations beyond what is available in standard
libraries.

AI frameworks are rapidly evolving to leverage the diverse capabilities of various
hardware accelerators, ensuring that the computational power of GPUs, TPUs, FPGAs,
and ASICs can be fully harnessed for AI development. This adaptation involves the
integration of specialized libraries and APIs that facilitate direct communication between
the software and the underlying hardware, optimizing for performance and efficiency.
For instance, TensorFlow and PyTorch have introduced support for TPUs and
CUDA-enabled GPUs, allowing developers to more easily shift workloads to these
accelerators for faster processing. Additionally, frameworks are incorporating features
like automatic mixed precision (AMP) and graph optimization techniques to further

DR
AF
T

enhance computational efficiency on accelerators. The development of
hardware-agnostic interfaces, such as ONNX (Open Neural Network Exchange), also
plays a crucial role in this adaptation, enabling models trained in one framework to be
executed on different types of accelerators. By embracing these advancements, AI
frameworks not only unlock the potential of existing hardware but also pave the way for
the next generation of AI innovations, ensuring that developers can focus on creating
cutting-edge models without being constrained by hardware compatibility issues.

The Complexity of the Ecosystem

DR
AF
T

The available paths through the AI software ecosystem from model to hardware are
very fragmented and parochial. Models are evolving rapidly, frameworks are evolving
rapidly, hardware is evolving rapidly, which makes it difficult to ensure interoperability
among the complex matrix of options. New innovations from various quarters of the AI
industry are addressing pieces of the problem and exposing an opportunity to stitch
together a comprehensive solution.

The primary AI frameworks for large language models are PyTorch, originally developed
by Meta, and TensorFlow and JAX, developed and sponsored by Google. The
frameworks have developed their own infrastructure for deploying operators on
hardware as well as third-party infrastructure, such as ONNX and TVM.

DR
AF
T

PyTorch: A Detailed Exploration

PyTorch provides two primary modes of operation: Eager Mode and Graph Mode.

● Eager Mode can be considered an interpreted mode in which each operator in
the model is executed as it is encountered. This provides flexibility and ease of
debugging.

● Graph Mode constructs a graph from the operators, permitting various forms of
optimization before executing the transformed set of operators as a whole.
PyTorch Graph Mode has evolved through multiple iterations of compilers,
including TorchScript and the more recent Dynamo.

PyTorch also has evolved through multiple iterations to transmit operators to hardware.
PyTorch Eager mode can invoke operator kernels directly, such as those written directly
in NVIDIA CUDA, AMD HIP, or Khronos SYCL, all similar C++-based kernel languages.
PyTorch Eager Mode invocation of CUDA C++ can be translated to AMD HIP C++
invocation of ROCm through use of HIPify tools. PyTorch can utilize NVIDIA CUDA
kernels produced by the Python-based OpenAI Triton language, which also is gaining
support to directly generate AMD ROCm code. PyTorch Eager Mode operators can be
captured by CUDAGraph for optimization of invocation of kernels. PyTorch also is able

DR
AF
T

to leverage oneDNN to access processor-specific kernels and operators, to complement
the pervasive NVIDIA cuDNN kernels and the expanding AMD ZenDNN kernels.
PyTorch continues to maintain a path to the OpenBLAS library to expand its breadth of
CPU targets.

PyTorch Graph mode currently utilizes the Dynamo compiler, which has enhanced the
compilation process with the concept of graph breaks to include assertions in the
compiled graph that allow transparent fallback to Eager Mode when characteristics of
the model dynamically change. Dynamo leverages the CPython Frame API to analyze
the function at runtime and identify potential optimizations, including recognizing
PyTorch operations. This allows for handling more dynamic Python features like
conditionals, loops, and dynamic control flow, but might have slightly higher overhead
compared to JAX for simple static functions. Dynamo feeds its optimized graph to the
PyTorch Inductor compiler for hardware target specific transformation. OpenAI Triton
primarily is intended as a high-level human-written language for AI model kernels;
Inductor targets Triton as an intermediate representation to generate CUDA and ROCm
code directly, in addition to the ability to invoke pre-existing kernels (either hand-written
or parametrically generated).

Microsoft, Meta and others are cooperating on Triton-Shared – an ambitious effort to
utilize the Triton Language for non-GPU hardware accelerators, such as Microsoft Maia
and Meta MTIA accelerator processors. Triton-Shared utilizes the LLVM MLIR project,
particularly targeting the LinAlg and MemRef dialects to transform and optimize the
Triton kernels, or potentially multi-kernel sub-graphs, for NPU-like hardware
accelerators. Triton-Shared ingests Triton kernels, which means that the IR already has
been lowered and some of the context and semantic information lost relative to PyTorch
Graphs, limiting some of the optimizations available in MLIR dialects.

Beyond PyTorch: The Broader Landscape
IREE-Turbine is an effort to ingest PyTorch FX/Dynamic graphs into the IREE pipeline
through the Torch-MLIR dialect, leveraging the entire IREE optimization infrastructure
described in more detail in a later section. The Torch-MLIR dialect serves as a bridge,
translating PyTorch models into an intermediate representation compatible with the
MLIR ecosystem. Torch-MLIR continues to expand its support for a widening variety of
models, including improvements for the important feature of dynamic tensor shapes.
The translation facilitates the application of various optimizations and transformations
inherent to MLIR, ensuring efficient execution across different hardware backends. This
integrated approach streamlines the deployment of PyTorch models, enhancing their
portability and efficiency across a wide range of AI accelerators, thereby accelerating
the development and deployment of AI applications.

DR
AF
T

PyTorch can also utilize Google’s XLA infrastructure to leverage its optimization
framework and to target XLA-based accelerators, such as Google TPU. XLA will be
discussed in the TensorFlow and JAX section.

Other projects have tied PyTorch Graphs into MLIR, either directly or via ONNX. The
lack of a formal specification for MLIR dialects and the instability of the MLIR and LLVM
APIs complicate the ability to utilize MLIR directly. Triton and IREE offer the potential of
a stable API interface for AI/ML compiler passes utilizing MLIR.

While MLIR provides a path to leverage PyTorch Graph Mode on diverse hardware,
PyTorch Eager Mode remains widely used and more strongly tied to GPUs and DNN
libraries.

Feature PyTorch

Programming
Model

Imperative, with
eager execution
as the default
and graph mode
(TorchScript) for
production
deployment

Compilation

Eager execution
by default, with
TorchScript for
graph-based
optimizations

Hardware
Acceleration

CUDA, cuDNN,
TensorRT, XLA
(experimental),
OpenAI Triton
(via PyTorch
2.0)

Flexibility

Highly flexible,
especially in
eager mode,
dynamic graph
creation and
modification

Customization
Extensive
customization

DR
AF
T

options with
Python-based
APIs

Community
and
Ecosystem

Large and active
community, rich
ecosystem of
libraries and
tools

TensorFlow, JAX and Pallas: Building for Diverse Hardware
TensorFlow and JAX have created an extensive infrastructure in support of diverse
hardware. Google has developed the OpenXLA compiler ecosystem to support diverse
accelerator hardware.

XLA Compiler
The XLA compiler optimizes linear algebra computations for CPUs, GPUs and ML
Accelerators. JAX utilizes a tracer to convert Python functions to its own, internal
representation, which is sent to XLA for compilation. This requires functions to be
mostly pure (no side effects) and have static shapes for optimal results. It compiles the
function once for specific input shapes and types. Subsequent calls with the same
shapes reuse the compiled version, leading to speedups. However, changing input
shapes triggers recompilation. Similar to PyTorch, the TensorFlow/JAX design utilizes
XLA to optimize and tie together tensor operations in conjunction with calls to
hand-optimized tensor kernel libraries for critical performance operations.

Kernel Optimization
TensorFlow and JAX adopted Eigen as an early design choice to optimize kernels for a
wide breadth of CPU targets. They have added oneAPI oneDNN as a path to invoke
optimized kernels and operators for x86_64 CPUs AVX, ARM CPUs SVE, and Intel
GPUs, to complement support for NVIDIA cuDNN and AMD ZenDNN kernels.

Pallas extension and Custom Kernel Development
JAX has added the Pallas extension to write custom kernels for GPUs and TPUs.
Pallas utilizes a code generation path through Mosaic for TPUs and through Triton for
GPUs.This enables developers to write high-performance custom kernels without
needing to delve into the intricacies of each hardware platform.

DR
AF
T

The combination of TensorFlow, JAX, and Pallas creates a powerful ecosystem for
accelerating machine learning workloads across diverse hardware. By leveraging the
optimization capabilities of XLA, the performance benefits of hand-optimized kernel
libraries, and the flexibility of custom kernel development through Pallas, developers
can harness the full potential of their hardware accelerators while maintaining a high
level of productivity and portability.

PaddlePaddle: Designed for Ultra-Large-Scale AI
PaddlePaddle has developed a high performance software stack that flexibly targets a wide
variety of workloads. Its design has been optimized for ultra large scale neural network training.

Compiler Infrastructure
PaddlePaddle utilizes its own compiler infrastructure, which includes importing the model either
in native Paddle format or X2Paddle conversion from TensorFlow, Caffe, or ONNX. High-level
optimizations are applied in the HLIR representation that is close to the original model. HLIR
captures the high-level structure and semantics of the model, including the computation graph
and operators. It is used to perform high-level optimizations, such as operator fusion and
algebraic simplifications, before translating the model into Paddle IR (PIR). PIR abstracts the
details of the model, making it easier to apply intermediate-level optimizations, such as inlining,
dead code elimination, and loop transformations. PIR serves as a bridge between the high-level
model definitions and the lower-level optimizations performed by Compiler Infrastructure for
Neural Networks (CINN), which compiles it into executable code for specific hardware platforms.
CINN applies hardware-specific optimizations, manages memory allocation, and ensures
efficient data movement to maximize performance.

Compiler Backend
Paddle utilizes Eigen for optimized tensor operations. It also can utilize oneDNN as a backend,
alongside GPUs (CUDA, ROCm) and XPU, and optionally OpenBLAS for BLAS operations on
CPUs. For specialized hardware, PaddlePaddle offers support for XPU, Baidu's
custom-designed accelerator for deep learning. XPU provides high performance and energy
efficiency for AI workloads, and PaddlePaddle's integration with XPU allows users to seamlessly
target this accelerator for their models.

The Key Advantages are:

● Scalability: Designed to handle ultra-large-scale models and distributed training across
multiple nodes.

● Flexibility: Supports a wide range of hardware platforms and offers both static and
dynamic graph execution modes.

● Performance: Leverages a sophisticated compiler infrastructure and optimized libraries
for high performance.

DR
AF
T

Feature TensorFlow JAX PyTorch PaddlePaddle

Programming
Model

Imperative and
declarative
(using Keras or
TensorFlow's
low-level APIs)

Functional
(pure functions
with static
shapes)

Imperative, with
eager execution
as the default
and graph mode
for production
deployment

Imperative and
declarative
(using high-level
APIs or
PaddlePaddle's
Fluid API)

DR
AF
T

Compilation

Ahead-of-time
(AOT) and
just-in-time
(JIT)

Just-in-time
(JIT) using
tracing

Eager execution
by default or
Dynamo JIT

Ahead-of-time
(AOT)
Uses its own
compiler
infrastructure
(HLIR, PIR,
CINN) for
optimization and
compilation

Hardware
Acceleration

XLA, cuDNN,
ZenDNN,
oneDNN

XLA, cuDNN,
ZenDNN,
oneDNN, Triton
(via Pallas)

Dynamo,
Inductor, CUDA,
cuDNN,
TensorRT, XLA
(experimental),
OpenAI Triton

CUDA, cuDNN,
ROCm,
oneDNN,
OpenBLAS,
Baidu XPU

Flexibility

More flexible
for dynamic
models and
control flow

Less flexible for
dynamic
models, but
easier to use
for functional
programming
and numerical
tasks

Highly flexible,
dynamic graph
creation and
modification

Offers both
static and
dynamic graph
execution
modes

Customization

Extensive
customization
options

Limited
customization
outside of
Pallas kernels

Extensive
customization
options with
Python-based
APIs

Extensive
customization,
especially with
lower-level APIs

Community
and
Ecosystem

Large and
mature, with a
vast array of
tools and
resources

Growing
rapidly, with a
strong focus on
research and
scientific
computing

Large and active
community, rich
ecosystem of
libraries and
tools

Growing
particularly
strong in China,
but smaller than
TensorFlow and
PyTorch

DR
AF
T

XLA: Accelerated Linear Algebra for AI

Accelerated Linear Algebra (XLA) is a domain-specific compiler for linear algebra
optimization originally designed for TensorFlow, but expanded to target a diverse set of
frameworks (TensorFlow, JAX, PyTorch) and a diverse set of hardware. XLA utilizes
MLIR for some components where appropriate, such as StableHLO, and utilizes LLVM
for hardware device support, but utilizes a unique HLO IR and passes infrastructure
instead of MLIR. XLA was developed and designed before MLIR was formed, and it

DR
AF
T

influenced the development of MLIR. XLA is a pluggable compiler framework that can
utilize IREE. It initially focused on linear algebra optimization.

XLA operates at the full-graph level and performs transformations accordingly. It also
considers the topology of the target (for multi-devices environments) and performs all
sharding/partitioning necessary, and optimizes the cross-device communication
scheduling to overlap computations. It is parameterized and customized for a given
execution environment (platform and runtime).

XLA restricts the IR to “functional” programs with no aliasing and mutations (side
effects), unlike PyTorch Dynamo and Inductor. Many AI models, including ones with
dynamic tensor shapes, may not run optimally in XLA. Special care needs to be taken to
avoid graph breaks and graph recompilations.

Feature XLA

IR

HLO
(High-Level
Optimizer)

Frontends
TensorFlow,
JAX

Backends
CPUs, GPUs,
TPUs

Focus
Linear algebra
optimization

DR
AF
T

IREE: MLIR-Based Framework for End-to-End AI Optimization

Intermediate Representation Execution Environment (IREE) is an MLIR-based
framework to optimize machine learning models. It is an effort to develop an end-to-end
AI compiler infrastructure completely in MLIR, ideally with all tensor operations
generated from and by the compiler pipeline. IREE targets the entire range of ML
hardware environments from data centers to mobile and edge deployments.

DR
AF
T

Model Support and Code Generation
IREE can utilize models expressed in PyTorch, TensorFlow, TensorFlow Lite, JAX, and
ONNX, and can generate code for CPUs, NVIDIA CUDA, AMD ROCm, and SPIR-V for
a growing list of hardware accelerators. PyTorch connects to Torch-MLIR, and
TensorFlow and JAX interface with the StableHLO IR into MHLO graph optimizer,
progressively lowering to MLIR LinAlg dialect and eventually the IREE execution
environment utilizing LLVM to generate CPU and GPU code.

MLIR Dialects and Optimization Frameworks
IREE utilizes the rich set of MLIR dialects, including Affine, Arith, LinAlg, MemRef,
MHLO, StableHLO, SCF, Tensor, and TOSA to construct optimization passes. The
dialects can be utilized in optimization passes to apply semantic-specific optimizations
that permit complex and aggressive transformations relevant to dialect-specific
representations of the objects and model.

IREE leverages these dialects to perform a wide range of optimizations, including:

● Operator Fusion: Combining multiple operations into a single kernel to reduce
overhead and improve performance.

● Tiling: Decomposing computations into smaller tiles to improve data locality and
cache utilization.

● Loop Unrolling: Duplicating loop bodies to reduce loop overhead and expose
parallelism.

● Hardware-Specific Optimizations: Leveraging specific instructions and
capabilities of the target hardware for maximum performance.

IREE's focus on a unified MLIR-based infrastructure and its comprehensive approach to
optimization make it a promising tool for accelerating AI workloads across diverse
hardware platforms.

Feature XLA IREE

IR

HLO
(High-Level
Optimizer)

MLIR
(Multi-Level
Intermediate
Representation
)

Frontends
TensorFlow,
JAX

PyTorch,
TensorFlow,
TensorFlow
Lite, JAX,

DR
AF
T

ONNX

Backends
CPUs, GPUs,
TPUs

CPUs, NVIDIA
CUDA, AMD
ROCm, SPIR-V
(Vulkan,
OpenCL)

Focus
Linear algebra
optimization

End-to-end
compilation and
optimization

Edge AI Ecosystem

ExecuTorch: Streamlining AI Deployment on Mobile and Edge
Devices
Mobile and edge devices have special requirements for AI deployment, including
diverse hardware, critical power requirements, low or no internet connectivity, and
realtime processing constraints. ExecuTorch is an emerging framework designed to
facilitate the deployment of AI models on mobile and edge devices, complementing the
capabilities of existing platforms like PyTorch. As part of the broader push towards
enabling efficient on-device AI, ExecuTorch focuses on providing a streamlined runtime
environment that optimizes PyTorch models for execution on constrained hardware.
This includes support for various hardware accelerators and integration with
platform-specific APIs to ensure optimal performance. ExecuTorch aims to leverage the
flexibility and ease of use of PyTorch while introducing optimizations that reduce the
computational footprint and power consumption of AI models. This makes it an
attractive choice for developers looking to deploy sophisticated AI applications in
scenarios where computational resources are limited, and real-time processing is
crucial.

Model Transformation
ExecuTorch exports a PyTorch model graph in ATen dialect in which it can be
transformed and optimized in architecture-agnostic ways. The ATen dialect is lowered to
the Edge dialect that is aware of the parameterized constraints of the target device for
additional specialization. The Edge dialect then is transformed to the Backend dialect
that leverages delegates for specific hardware, allowing Core ML on iOS, QNN on
Qualcomm, or TOSA on Arm to rewrite the graph. The resulting graph can be further
prepared for the runtime environment through memory layout and usage planning,
selectively linking actively-used kernels, and optimally serializing and packing the

DR
AF
T

program for efficient loading and execution by the runtime. For optimal memory
planning, tensor mutations need to be expunged, as required by XLA.

Target Backend and Dialects
ExecuTorch is designed to target a number of mobile hardware accelerators, including
CPUs via XNNPACK, GPUs via Vulkan, Apple Neural Engine via Apple CoreML, and
DSPs, with flexibility for additional targets.

Model Optimization

ExecuTorch applies a variety of optimizations to improve model performance on mobile
and edge devices:

● Quantization: Reduces the precision of model weights and activations to lower
memory usage and computational requirements.

● Pruning: Removes redundant connections or neurons in the model to reduce its
size and complexity.

● Fusion: Combines multiple operations into a single kernel to reduce overhead
and improve performance.

● Memory Planning: Optimizes memory layout and usage to reduce memory
footprint and improve cache utilization. To ensure optimal memory planning,
tensor mutations are eliminated as required by XLA (Accelerated Linear
Algebra). This approach guarantees predictable and efficient memory usage,
which is critical for mobile and edge deployments where resources are limited.

● Kernel Selection: Selectively links actively used kernels to minimize the
runtime's size.

By addressing the specific needs of mobile and edge AI deployment, ExecuTorch
provides a robust framework that combines the strengths of PyTorch with targeted
optimizations for constrained environments. This ensures that AI models can be
efficiently deployed and executed on a wide range of devices, enabling real-time,
on-device AI applications.

Feature TensorFlow JAX PyTorch PaddlePaddle ExecuTorch

Programming
Model

Imperative and
declarative
(Keras or
low-level APIs)

Functional
(pure functions
with static
shapes)

Imperative, with
eager
execution
(default) and
graph mode
(TorchScript)

Imperative and
declarative
(using
high-level APIs
or
PaddlePaddle's
Fluid API)

Imperative,
based on
PyTorch

DR
AF
T

Compilation

Ahead-of-time
(AOT) and
just-in-time
(JIT)

Just-in-time
(JIT) using
tracing

Eager
execution by
default, with
TorchScript for
graph-based
optimizations

Uses its own
compiler
infrastructure
(HLIR, PIR,
CINN) for
optimization
and compilation

Multi-stage
compilation
(ATen, Edge,
Backend)

Hardware
Acceleration

XLA, cuDNN,
ZenDNN,
oneDNN

XLA, cuDNN,
ZenDNN,
oneDNN, Triton
(via Pallas)

CUDA, cuDNN,
TensorRT, XLA
(experimental),
OpenAI Triton
(via PyTorch
2.0)

CUDA, ROCm,
oneDNN,
OpenBLAS

XNNPACK,
Vulkan, Core
ML, DSPs, and
others

Flexibility

More flexible
for dynamic
models and
control flow

Less flexible for
dynamic
models, excels
in numerical
tasks

Highly flexible,
dynamic graph
creation and
modification

Offers both
static and
dynamic graph
execution
modes

Built for
flexibility on
resource-constr
ained
environments

Customization

Extensive
customization
options

Limited outside
of Pallas
kernels

Extensive
customization
options with
Python-based
APIs

Good
customization
options,
especially with
lower-level
APIs

Customizable
through
platform-specific
delegates (Core
ML, QNN,
TOSA)

Community
and
Ecosystem

Large and
mature, vast
array of tools
and resources

Growing
rapidly, strong
focus on
research and
scientific
computing

Large and
active
community, rich
ecosystem of
libraries and
tools

Growing
community,
particularly
strong in China

Still emerging,
but leveraging
the PyTorch
community

Scalability

Designed for
scalability,
especially with
distribution
strategies

Well-suited for
distributed
computing and
large-scale
models

Scalable, with
various
distributed
training options

Optimized for
ultra-large-scal
e models and
distributed
training

Designed for
mobile and edge
deployments,
not focused on
large-scale
training

Target
Environments

Cloud, servers,
workstations

Cloud, servers,
workstations

Cloud, servers,
workstations,
mobile

Cloud, servers,
workstations

Mobile and edge
devices

TensorFlow Lite: Enabling On-Device Machine Learning
TensorFlow Lite (TFLite) is a lightweight, open-source deep learning framework
designed specifically for mobile and edge devices. It enables developers to deploy

DR
AF
T

machine learning models on resource-constrained environments such as smartphones,
embedded systems, and IoT devices. TFLite provides a suite of tools and APIs for
optimizing and converting TensorFlow models into a format that is efficient for mobile
and edge hardware. Its interpreter is optimized for low latency and high performance,
supporting hardware acceleration on various platforms, including Android Neural
Networks API (NNAPI), GPU, and Hexagon DSP. TFLite's ability to perform on-device
inference ensures real-time data processing and reduced dependency on cloud
services, making it ideal for applications requiring low latency, privacy, and offline
capabilities.

Use cases

TFLite has been widely adopted across various industries and applications:

● Mobile Apps: TFLite powers on-device AI features in mobile apps, such as real-time
image recognition, language translation, and voice assistants.

● Embedded Systems: TFLite enables AI on devices like microcontrollers and IoT
devices, allowing for intelligent edge computing in areas like smart homes, wearables,
and industrial automation.

● Healthcare: TFLite has been used to develop medical image analysis tools, disease
prediction models, and personalized health monitoring applications.

● Finance: TFLite can be leveraged for fraud detection, risk assessment, and
personalized financial recommendations.

● Autonomous Systems: TFLite is used in applications like object detection and
classification for autonomous vehicles and drones.

Feature TensorFlow JAX PyTorch
PaddlePaddl
e ExecuTorch

TensorFlow
Lite

Programmin
g Model

Imperative/De
clarative Functional Imperative

Imperative/De
clarative

Imperative
(PyTorch)

Imperative
(limited)

Compilation AOT/JIT JIT (tracing)
Eager/TorchS
cript

HLIR/PIR/CIN
N Multi-stage AOT

Hardware
Acceleration

XLA, cuDNN,
oneDNN, etc.

XLA, cuDNN,
etc.

CUDA,
cuDNN,
TensorRT,
etc.

CUDA,
ROCm,
oneDNN, etc.

XNNPACK,
Vulkan, etc.

NNAPI, GPU
delegate

Flexibility High Lower High High High Limited

Customizati
on Extensive Limited Extensive Good Via delegates Limited

Community
& Large, mature Growing Large, active Growing Emerging

Large,
growing

DR
AF
T

Ecosystem

Scalability High High High Very high Limited Low

Target
Environment
s

Cloud,
servers, etc.

Cloud,
servers, etc.

Cloud,
servers,
mobile

Cloud,
servers, etc. Mobile, edge Mobile, edge

Model
Optimization Yes Limited Yes Yes Yes Built-in

DR
AF
T

Paddle Lite: Lightweight Inference for Edge Devices

DR
AF
T

DR
AF
T

Paddle Lite provides an ecosystem for mobile, embedded and edge devices. Paddle
Lite supports acceleration and optimization strategies employing quantization, subgraph
fusion, and kernel optimization to generate lightweight models tuned for edge devices.
It natively supports a wide variety of hardware, including Android, iOS, Metal, QNN,
Android NNAPI, many XPUs and NPUs.

Paddle Lite has been successfully deployed in various real-world applications, including:

● Mobile Applications: Image recognition, object detection, natural language
processing tasks in apps.

● Embedded Systems: AI-powered cameras, smart home devices, industrial
automation systems.

● IoT Devices: Real-time sensor data analysis, anomaly detection, predictive
maintenance.

● Robotics: Object tracking, path planning, control systems for autonomous
robots.

Feature
TensorFlo
w JAX PyTorch

PaddlePad
dle

ExecuTorc
h

TensorFlo
w Lite Paddle Lite

Programmi
ng Model

Imperative/
Declarative Functional Imperative

Imperative/
Declarative

Imperative
(PyTorch)

Imperative
(limited)

Imperative
(limited)

Compilatio
n AOT/JIT JIT (tracing)

Eager/Torch
Script

HLIR/PIR/C
INN Multi-stage AOT

Model
optimization
pipeline

Hardware
Acceleratio
n

XLA,
cuDNN,
oneDNN,
etc.

XLA,
cuDNN, etc.

CUDA,
cuDNN,
TensorRT,
etc.

CUDA,
ROCm,
oneDNN,
etc.

XNNPACK,
Vulkan, etc.

NNAPI,
GPU
delegate

Various
(Metal,
QNN,
NNAPI)

Flexibility High Lower High High High Limited Limited

Customizat
ion Extensive Limited Extensive Good

Via
delegates Limited Limited

Communit
y &
Ecosystem

Large,
mature Growing

Large,
active Growing Emerging

Large,
growing Growing

Scalability High High High Very high Limited Low Limited

Target
Environme
nts

Cloud,
servers,
etc.

Cloud,
servers,
etc.

Cloud,
servers,
mobile

Cloud,
servers,
etc.

Mobile,
edge

Mobile,
edge

Mobile,
edge, IoT

Model
Optimizati
on Yes Limited Yes Yes Yes Built-in Built-in

DR
AF
T

Modular: A Unified AI Infrastructure with the Mojo Language
Modular, both the company and the AI Infrastructure, is striving to reinvent the AI
ecosystem utilizing their newly designed Mojo language built on the MLIR infrastructure.
It is not strictly a framework or a compiler system, but rather a combination of both,
along with other components to create a unified AI infrastructure.The language and
optimization infrastructure provide a solution to reduce the fragmentation in the machine
learning programming language environment to encourage innovation and simplify
development and deployment of efficient machine learning models. Modular provides a
Python-like language that targets performance of low-level languages like C Language.
Modular leverages the MLIR architecture, but is developing a separate pipeline based
on dialects distinct from the dialects used by IREE, MLIR-Turbine, ONNX-MLIR, and
Triton-Shared instead of relying on the existing MLIR dialects used by these
frameworks. Modular is developing its own set of dialects specifically tailored for the
Mojo language and its optimization goals. This decision allows Modular to have full
control over the compilation process and enables the development of language-specific
optimizations and transformations.

Potential Use cases

● Research: Mojo could be used to develop and prototype high-performance AI
models for research purposes.

● Production: Modular's infrastructure could enable efficient deployment of
Mojo-based models in production environments.

● Hardware Acceleration: Mojo's ability to target different hardware architectures
could be leveraged to accelerate specific AI workloads on specialized
accelerators.

Feature XLA IREE TVM Modular (Mojo)

Feature
Not applicable
(compiler)

Not applicable
(compiler)

Not applicable
(compiler)

Pythonic, similar
to Python

Programming
Model AOT, JIT

Multi-level
compilation,
leveraging
MLIR

Multi-stage
compilation,
tensor
expression
based

MLIR-based,
with custom
dialects

Compilation
CPUs, GPUs,
TPUs

CPUs, GPUs,
TPUs, some
NPUs,
targeting more

CPUs, GPUs,
specialized
accelerators

CPUs, GPUs,
potentially
targeting more
with MLIR

DR
AF
T

Hardware
Acceleration

Lower (strict
functional
requirements)

High (supports
various
frameworks
and models)

High (flexible
IR and
scheduling)

High (Pythonic
syntax,
MLIR-based
optimization)

Flexibility

Customizable
through XLA
passes

Highly
customizable
through MLIR
dialects

Customizable
through
schedules and
templates

Customizable
through MLIR
dialects

Customization

Large, mature
(part of
TensorFlow)

Growing, focus
on
cross-platform/
hardware
deployment

Large and
active
community,
strong in
research

Still developing,
growing
community

Community and
Ecosystem

High
(distributed
training
support)

Designed for
scalability
across devices

Scalable
(auto-tuning
and distributed
compilation)

High (leveraging
MLIR)

Scalability
Primarily model
optimization

Deployment to
diverse targets,
research,
production

Deployment,
embedded
systems,
research

High-performanc
e AI, potentially
broader range
later

DR
AF
T

ONNX: A Bridge for Interoperability in the AI Ecosystem

ONNX is an open standard and open ecosystem that defines a common representation
for machine learning algorithms and provides a set of software tools to convert among
the frameworks and to the common ONNX Runtime. ONNX defines a standard for an
interchangeable representation of the graph for a machine learning model, an
ever-growing list of operators, and data types. Ideally, one can export the graph from
any of the machine learning frameworks into a well-defined ONNX description with
precise semantics and import the graph into another framework for further optimization
and deployment. The wide variety of frameworks for interchange include PyTorch,
TensorFlow, JAX, Apache MXNet, Tencent NCNN, and Baidu PaddlePaddle. The model
can be transformed and optimized within the ONNX representation, and can be
deployed through multiple ONNX-based frameworks, such as ONNX Runtime and
ONNX-MLIR.

ONNX-MLIR and its Dialects
ONNX-MLIR provides a compiler framework based on MLIR that ingests ONNX models
in an ONNX dialect and generates code for various targets, including x86_64, ARM,
Power, and IBM Z. It can be extended to AI accelerator targets.

DR
AF
T

ONNX-MLIR leverages the ONNX, KRNL, LinAlg, and Affine MLIR dialects. The ONNX
dialect represents native ONNX operators and operations. The KRNL dialect
represents the lowering of ONNX operators to loops. The KRNL dialect provides
facilities for tiling, fusion, parallelization by recording the optimization to build a recipe of
loop optimizations that can be deployed, but allowing the optimizations to be reverted
depending on impacts and interactions with other optimizations and transformations.

Benefits
Framework Interoperability: Enables seamless model exchange between frameworks
like PyTorch, TensorFlow, JAX, and others.
Hardware Optimization: ONNX Runtime and ONNX-MLIR provide access to
hardware-specific optimizations for improved performance on various devices.
Simplified Deployment: Allows developers to deploy models on different platforms
without rewriting or retraining them.
Community and Ecosystem: ONNX has a large and active community with a growing
ecosystem of tools and libraries.

Use cases
Microsoft Windows ML: Uses ONNX Runtime to deploy machine learning models on
Windows devices.
Facebook Caffe2: Supports exporting models to ONNX for broader compatibility and
deployment.
NVIDIA TensorRT: Integrates with ONNX Runtime for efficient deployment of deep
learning models on NVIDIA GPUs.

NNEF: Neural Network Exchange Format

Neural Network Exchange Format (NNEF) is an open standard developed by the Khronos
Group to facilitate the exchange of trained neural networks among different frameworks and
inference engines. Similar to ONNX, NNEF aims to promote interoperability and portability in the
machine learning ecosystem, enabling the deployment of neural networks across diverse
platforms and devices.

The NNEF standard defines a common representation format for neural networks, which
captures the structure and parameters of the model. This format is designed to be simple,
flexible, and expressive, allowing the representation of a wide range of neural network
architectures and operations. By providing a standardized way to describe neural networks,
NNEF enables the seamless transfer of models between different frameworks and inference
engines.

DR
AF
T

One of the key advantages of NNEF is its focus on deployment and inference. While other
exchange formats, such as ONNX, cover a broader range of machine learning models and
tasks, NNEF specifically targets neural networks and is optimized for efficient inference on
various platforms. This specialization allows NNEF to provide a streamlined and optimized
representation that can be easily mapped to target hardware.

NNEF supports a comprehensive set of operations and data types commonly used in neural
networks, including convolution, pooling, activation functions, and tensor manipulation. The
standard also defines a set of best practices and guidelines for representing neural networks,
ensuring consistency and compatibility across different implementations.

To facilitate the adoption and use of NNEF, the Khronos Group provides a software
development kit (SDK) that includes tools and libraries for working with NNEF models. The SDK
enables developers to convert neural networks from popular frameworks, such as TensorFlow
and PyTorch, into the NNEF format. It also provides APIs and utilities for manipulating NNEF
models, applying optimizations, and integrating them into inference engines or target platforms.

One of the strengths of NNEF is its focus on efficiency and performance. The standard is
designed to minimize the overhead of model translation and enable direct mapping to target
hardware. This allows inference engines and deployment platforms to leverage the full potential
of the hardware, resulting in faster and more efficient execution of neural networks.

Benefits

Broad Compatibility: NNEF supports a wide range of machine learning models, including both
deep learning and classical machine learning algorithms.

Hardware Agnosticism: NNEF models can be deployed on various hardware platforms,
including CPUs, GPUs, and specialized AI accelerators.

Extensibility: NNEF is designed to be extensible, allowing for the addition of new operators
and features as the field of AI evolves.

Simplified Workflow: NNEF simplifies the deployment of AI models by providing a
standardized format and tools for conversion and optimization.

Use cases:
Khronos Group: NNEF is developed and maintained by the Khronos Group, a consortium of
industry leaders working on open standards for graphics and compute.
NNStreamer: A GStreamer-based multimedia framework that supports NNEF for efficient
processing of AI workloads on various hardware platforms.
Embedded and Mobile Devices: NNEF is well-suited for deployment on resource-constrained
devices, enabling on-device AI applications.

DR
AF
T

Feature NNEF

ONNX (Open
Neural Network
Exchange)

Scope

Broader scope,
including both
deep learning
and classical
ML models

Primarily
focused on deep
learning models

Community
Smaller
community

Larger and more
active
community

Industry
Adoption

Growing
adoption,
particularly in
embedded and
mobile
applications

Widely adopted
by major players
like Microsoft
and Facebook

DR
AF
T

PolyBlocks: MLIR-Based Compiler for High-Dimensional Data
Spaces

PolyMage Labs has created PolyBlocks based on MLIR infrastructure. PolyBlocks is
based on the MLIR infrastructure. It can support a variety of programming languages
and frameworks (like PyTorch, TensorFlow, and JAX) as well as hardware targets.
PolyBlocks particularly employs polyhedral optimization techniques and specialize in
compiling computations on high-dimensional data spaces. PolyBlocks optimization
techniques encompass tiling, fusion, performing recomputation (in conjunction with tiling
and fusion), packing into on-chip buffers for locality, eliminating intermediate tensors or
shrinking intermediate tensors to bounded buffers fitting into on-chip memory, mapping
to matmul/tensor cores, and efficient parallelization in a way unified with all other
transformations.

This offers Technical Advantages of Efficient Handling of High-Dimensional Data,
where PolyBlocks excels at optimizing computations involving high-dimensional tensors,
common in deep learning models. It can effectively exploit parallelism and data locality

https://mlir.llvm.org/
https://polyhedral.info/

DR
AF
T

to achieve high performance. It also offers a Unified Optimization Framework unlike
some compilers that rely on separate optimization passes for different transformations,
PolyBlocks integrates all optimizations within a unified framework, leading to more
effective overall optimization. It is Hardware Agnosticism as PolyBlocks can target a
variety of hardware architectures, including CPUs, GPUs, and specialized AI
accelerators, by leveraging MLIR's hardware abstraction capabilities.

Use cases
Deep Learning: PolyBlocks has been used to accelerate training and inference of deep
learning models in various domains, such as natural language processing, computer
vision, and reinforcement learning.
Scientific Computing: It has also found applications in scientific computing, optimizing
complex simulations and numerical calculations involving high-dimensional data.

Feature XLA IREE PolyBlocks

IR
(Intermediate
Representatio
n)

HLO
(High-Level
Optimizer)

MLIR
(Multi-Level
Intermediate
Representation
) MLIR

Frontends
TensorFlow,
JAX

PyTorch,
TensorFlow,
TensorFlow
Lite, JAX,
ONNX

PyTorch,
TensorFlow,
JAX

Backends
CPUs, GPUs,
TPUs

CPUs, GPUs,
TPUs, some
NPUs,
targeting more

CPUs, GPUs,
specialized
accelerators

Focus Linear algebra

General-purpos
e ML model
optimization

High-dimension
al data,
polyhedral
optimizations

TVM: An End-to-End Machine Learning Compiler Stack
TVM is an ecosystem for compiling, optimizing, and tuning ML models produced by
various frameworks, including PyTorch, TensorFlow, ONNX, Keras. The TVM compiler
stack is based on IRModule to apply a series of optimizations tailored for different

DR
AF
T

hardware targets. These optimizations include operator fusion, memory optimization,
and hardware-specific code generation, with its own, extensible compiler infrastructure
to transform the IR in various optimization stages. TVM targets a variety of target
architectures and runtimes. It has Target-Agnostic Scheduling where TVM employs a
target-agnostic scheduling mechanism that separates the description of the computation
from the underlying hardware details. This allows developers to optimize their models
once and deploy them on different platforms without significant modifications.
Another component called Automatic Tuning (AutoTVM) of the TVM ecosystem is
infrastructure to automatically optimize and tune models based on profiling feedback.
There is also Tensor Expression Language (TE) which allows developers to express
high-level computations concisely. This facilitates the exploration of different
optimization strategies and enables the generation of optimized code for various
hardware backends.

TVM also includes the experimental Versatile Tensor Accelerator (VTA) optimizing
compiler framework for machine learning. VTA is built on its own compiler
infrastructure, which includes its own intermediate representation, a graph optimizer,
and a tensor optimizer.

Use Cases

Model Deployment: TVM has been widely used to deploy deep learning models on
various hardware platforms, achieving significant performance improvements and cost
savings compared to traditional approaches.

Embedded Systems: TVM's ability to optimize models for resource-constrained
devices makes it ideal for deploying AI on edge devices, such as smartphones, IoT
devices, and embedded systems.

Hardware Acceleration Research: VTA provides a platform for research and
development of new AI accelerator architectures, enabling rapid prototyping and
experimentation.

Ecosystem Integration

TVM integrates with various tools and frameworks:

● Relay: A functional graph intermediate representation for representing and
optimizing deep learning models.

● AutoScheduler: A newer automatic scheduling system that complements
AutoTVM, providing even more efficient model optimization.

DR
AF
T

● Micro TVM: A framework for deploying TVM models on bare-metal
microcontrollers.

● BYOC (Bring Your Own Codegen): A mechanism for integrating custom code
generators and operators into the TVM stack.

Feature XLA IREE TVM PolyBlocks

IR
(Intermediate
Representatio
n)

HLO
(High-Level
Optimizer)

MLIR
(Multi-Level
Intermediate
Representation
)

Relay
(functional
graph IR) MLIR

Frontends
TensorFlow,
JAX

PyTorch,
TensorFlow,
TensorFlow
Lite, JAX,
ONNX

TensorFlow,
PyTorch,
ONNX, Keras

PyTorch,
TensorFlow,
JAX

Backends
CPUs, GPUs,
TPUs

CPUs, GPUs,
TPUs, some
NPUs,
targeting more

CPUs, GPUs,
specialized
accelerators

CPUs, GPUs,
specialized
accelerators

Focus Linear algebra

General-purpos
e ML model
optimization

General-purpos
e ML model
optimization

High-dimension
al data,
polyhedral
optimizations

The Generalized Acceleration Languages

CUDA: Empowering GPU Acceleration for AI
Compute Unified Device Architecture (CUDA) is a programming model and environment
in which to implement numerically intensive computations for NVIDIA GPUs. CUDA
targets the GPU virtual instruction set, allowing fine-grained control of computation and
data placement within the memory hierarchy.

CUDA's success in the AI/ML ecosystem can be attributed to several key factors,
particularly its implementation as a single-source C++ embedded domain-specific
language (DSL), its use of the Single Instruction, Multiple Threads (SIMT) model, and its
strong commitment to backward compatibility throughout its evolution. The
single-source C++ DSL approach allows developers to write both host and device code
within the same file, simplifying the development process and enabling seamless

DR
AF
T

integration with existing C++ applications. The SIMT model, which allows thousands of
threads to execute the same instruction simultaneously on different data, effectively
leverages the massive parallel processing power of GPUs, making it highly efficient for
a wide range of computational tasks.

Parallel Thread Execution (PTX) is a low-level, parallel thread execution virtual machine
and instruction set architecture for the NVIDIA CUDA programming environment. PTX
provides a stable instruction set and environment for CUDA and the NVCC compiler.
The PTX instruction set is translated to the instruction set of the hardware accelerator
by the device driver. CUDA's backward compatibility ensures that code written for earlier
devices continues to run on newer hardware and software platforms without
modification, providing developers with confidence that their investments in CUDA
development (knowledge, skills, experience, tools, codebase, and applications) will
remain valuable over time.

Library and ecosystem

One notable example is the cuDNN library, which provides highly optimized primitives
for deep learning operations, such as convolutions, pooling, and activation functions.
cuDNN has become an essential component in many deep learning frameworks,
enabling efficient training and inference on NVIDIA GPUs.

Another important development in CUDA is the introduction of tensor cores, specialized
hardware units designed for accelerating matrix multiplication and convolution
operations. Tensor cores provide significant performance gains for deep learning
workloads, and CUDA has been extended to support programming these cores
efficiently.

CUDA's extensive ecosystem, which includes a wide range of libraries, tools, and
frameworks, has also contributed to its popularity. From domain-specific libraries like
cuBLAS (linear algebra) and cuFFT (fast Fourier transforms) to higher-level frameworks
like cuDNN and TensorRT, CUDA provides a rich set of resources that enable
developers to build high-performance applications with ease.

While CUDA is the dominant GPU programming model, it is specific to NVIDIA GPUs,
limiting its portability to other hardware platforms. Alternatives like OpenCL and SYCL
offer more open and vendor-neutral approaches.

This combination of ease of use, powerful parallel processing capabilities, and a stable,
evolving platform has made CUDA the preferred choice for many in the AI/ML
community.

DR
AF
T

ROCm: Open-Source Software Stack for AMD GPUs
Radeon Open Compute (ROCm) is a software stack that can be used to implement
numerically intensive computations for AMD GPUs. It offers a comprehensive suite of
tools, libraries, and frameworks, including compilers, debuggers, and performance
analysis tools, aimed at facilitating the development and optimization of applications on
AMD hardware.

At the core of ROCm is the Heterogeneous-computing Interface for Portability (HIP)
programming environment, an embedded C++ DSL for writing kernels for both NVIDIA
and AMD GPUs, similar to CUDA for Nvidia and SYCL for all forms of accelerators
ROCm also provides OpenCL compilers, as well as support for GPU-accelerated
compilation through LLVM. ROCm offers GPU debugging tools and performance
analysis tools to help developers identify and resolve issues in their GPU code. ROCm
includes optimized libraries for common mathematical operations (e.g., rocBLAS for
linear algebra) and GPU-accelerated communication (e.g., rccl for multi-GPU and
multi-node communication). ROCm supports popular frameworks like TensorFlow and
PyTorch, allowing developers to leverage AMD GPUs for AI and machine learning
workloads.

There is also a HIPify translation facility to adapt CUDA code to AMD GPUs. This tool
can automatically translate many CUDA constructs to their HIP equivalents, significantly
reducing the effort required to port existing CUDA applications to run on AMD GPUs.
While not all CUDA features have direct equivalents in HIP, the tool can handle a large
portion of common GPU programming patterns, making it easier for developers to target
multiple GPU platforms.

Open Source
One of the key strengths of ROCm is its open-source nature. Unlike proprietary
solutions, ROCm provides full access to its source code, encouraging community
contributions and fostering transparency in development. This open approach allows
developers to customize and extend the platform to meet their specific needs,
potentially leading to more rapid innovation and problem-solving.

Together, ROCm and HIP empower developers to harness the full potential of AMD
GPUs, providing a flexible and efficient platform for a wide range of computationally
intensive applications.

DR
AF
T

SYCL: Open Acceleration with C++ for any accelerator

SYCL is a Khronos embedded domain-specific language that provides a Standard C++
abstraction layer, similar to CUDA and HIP, to enable heterogeneous programming and
to improve productivity and efficiency for diverse hardware accelerators. The latest
SYCL is built on standard C++17 and later versions, allowing developers to leverage
modern C++ features and existing codebases, with the intention to follow the ISO C++
standard release. SYCL uses C++ templates extensively, enabling compile-time
optimizations and type safety.

The first implementations of SYCL used OpenCL but now implementations use various
device-specific back-ends as well as OpenCL.

SYCL allows developers to write code that runs on a variety of hardware accelerators,
such as GPUs, CPUs, FPGAs, and more, within a single source code.

oneAPI DPC++ is an implementation of SYCL and is a downstream fork of the LLVM
Clang project that is in the process of being upstreamed to the LLVM Clang project.
DPC++ implements multiple backends that are adapted for different GPU target
languages including SPIR-V, PTX and GCN. SYCL can utilize the Standard Portable
Intermediate Representation (SPIR-V), implemented as a dialect in MLIR.

SYCL provides constructs for expressing both data parallelism (same operation on
multiple data elements) and task parallelism (different operations running concurrently).
This allows developers to leverage the full parallelism of modern hardware. SYCL's
buffer/accessor model is an implicit data movement model that simplifies data
management between the host and devices, abstracting away the complexities of
memory transfers and synchronization. It also offers an explicit data movement model.

DR
AF
T

SYCL code can interoperate with other programming models and libraries, such as
OpenMP, MPI, and CUDA, allowing developers to leverage existing code and libraries.
Recent development of a SYCL SC WG adds Safety Critical to enable SYCL in
automotive, flight controls, space, and any safety-critical applications that might need to
follow ISO-26262, 61508, and/or 21448.

SYCL in the AI Ecosystem
SYCL is well positioned to provide a foundation on which to enhance numerically
intensive algorithms written in C++, with or without CUDA and HIP, to exploit a broad
range of diverse hardware accelerators. It simplifies the creation of optimized kernels
that can be deployed in libraries, such as SYCL-DNN and SYCL-BLAS, for use by
machine learning frameworks. SYCL can be utilized in machine learning frameworks
such as PyTorch and TensorFlow, to write operators similar to CUDA and HIP, targeting
a wide variety of hardware accelerators. SYCL complements and integrates with the
compiler infrastructure for AI models by delivering the numerically intensive kernel
libraries and operations called by the AI model frameworks.

SYCL enables the acceleration of various high-performance computing applications
beyond AI, such as scientific simulations and financial modeling. As SYCL follows C++
and uses C++ templates, it can use compile-time programing constructs such as
macros, inlining, expression templates, and metatemplate programming to support rapid
rewrite of ML operators using different template types passed in as arguments.

Advantages of SYCL

1. Portability: SYCL code can run on a wide range of hardware without modification,
reducing vendor lock-in.

2. Performance: It allows developers to write high-performance code that can
leverage hardware-specific optimizations.

3. Productivity: The single-source programming model simplifies development and
maintenance of heterogeneous applications.

4. Standards-Based: Being an open standard ensures long-term support and
community-driven improvements.

SYCL's ability to target multiple hardware platforms makes it an attractive option for
developers seeking to create portable, high-performance AI and ML applications.

SYCL is a powerful tool for accelerating a wide range of applications on diverse
hardware. Its single-source C++ approach, multi-backend support, and advanced

DR
AF
T

parallelism features make it an attractive option for developers seeking performance
and portability.

OpenCL: Open Acceleration with C for compute and AI/ML

OpenCL (Open Computing Language) is an open standard for parallel programming of
heterogeneous systems, managed by the Khronos Group. While it's a general-purpose
framework, OpenCL has found significant application in the AI and machine learning
domains due to its ability to leverage diverse hardware accelerators.

The Key Features of OpenCL for AI/ML are Heterogeneous Computing where OpenCL
allows developers to write code that can run on various hardware accelerators,
including CPUs, GPUs, FPGAs, and specialized AI processors. It is also about Portable
Performance where it provides a low-level API that enables fine-grained control over
hardware resources, allowing for highly optimized implementations of AI and ML
algorithms. It is Vendor-Neutral. As an open standard, OpenCL supports hardware from
multiple vendors, reducing dependency on proprietary solutions. Finally, it enables
Kernel Programming where OpenCL uses a C-based kernel language, allowing
developers to write custom kernels for specialized AI operations.

OpenCL in the AI/ML Ecosystem:

1. Deep Learning Frameworks: Some deep learning frameworks, such as Caffe and
Keras, have OpenCL backends, enabling the execution of neural networks on
OpenCL-compatible devices.

DR
AF
T

2. Tensor Libraries: Libraries like CLBlast provide OpenCL implementations of
BLAS (Basic Linear Algebra Subprograms), which are fundamental to many ML
algorithms.

3. Computer Vision: OpenCV, a popular computer vision library, supports OpenCL
acceleration for various image processing and machine learning tasks.

4. Scientific Computing: Libraries like ArrayFire, which are used in scientific
computing and some ML applications, leverage OpenCL for hardware
acceleration.

Advantages for AI/ML:

1. Hardware Flexibility: OpenCL allows AI models to run on a wide range of
hardware, from high-performance GPUs to low-power embedded devices.

2. Custom Optimizations: Developers can write custom OpenCL kernels to optimize
specific AI operations for particular hardware architectures.

3. Edge AI: OpenCL's support for embedded and mobile processors makes it
suitable for deploying AI models at the edge.

4. Legacy Hardware Support: It can leverage older hardware that may not be
supported by newer, AI-specific frameworks.

Challenges and Considerations:

1. Complexity: OpenCL's low-level nature can make it more complex to use
compared to higher-level AI frameworks.

2. Performance Tuning: Achieving optimal performance often requires
hardware-specific optimizations, which can be time-consuming.

3. Ecosystem Maturity: While growing, the ecosystem of OpenCL-based AI tools
and libraries is less mature compared to CUDA or other AI-specific platforms.

4. Competition from AI-Specific Solutions: Frameworks like CUDA and ROCm,
which are more tailored for AI workloads, often provide better out-of-the-box
performance for common AI tasks.

Recent Developments:

1. OpenCL 3.0: The latest version of the standard focuses on a modular
architecture, allowing implementations to support a core feature set with optional
extensions. This approach aims to improve adoption across diverse hardware
platforms.

2. Integration with SYCL: There's ongoing work to enable interoperability between
OpenCL and SYCL, potentially combining OpenCL's widespread support with
SYCL's more modern C++ programming model.

DR
AF
T

3. AI-Specific Extensions: Some vendors are developing OpenCL extensions
specifically for AI and ML workloads, enhancing its capabilities in this domain.

Use Cases in AI/ML:

1. Custom AI Accelerators: Companies developing specialized AI hardware often
provide OpenCL support as a way to enable software ecosystem development.

2. Research and Prototyping: OpenCL's flexibility makes it useful for researchers
exploring novel AI algorithms or hardware architectures.

3. Cross-Platform AI Deployment: Organizations needing to deploy AI models
across a diverse hardware landscape may leverage OpenCL for its portability.

4. Edge AI and IoT: OpenCL's support for embedded processors makes it valuable
for deploying AI models in edge and IoT devices.

While OpenCL faces strong competition from AI-specific frameworks and APIs, its open
nature, hardware flexibility, and low-level control continue to make it a relevant tool in
the AI and ML ecosystem, particularly for specialized or cross-platform applications.

Feature OpenCL SYCL CUDA HIP

Programming
Model

Open standard,
C-based,
recent
extensions has
C++ for
OpenCL

Standard C++
based
(single-source)

C++ with
CUDA
extensions

C++ with HIP
extensions

Compilation
Runtime
compilation

Ahead-of-Time
(AOT) NVCC compiler

HIPCC
compiler

Hardware
Acceleration

CPUs, GPUs,
FPGAs, etc.

CPUs, GPUs,
FPGAs, etc. NVIDIA GPUs AMD GPUs

Flexibility High High Lower Medium

Customization
High (custom
kernels)

High (custom
kernels)

High (custom
kernels)

High (custom
kernels)

Community &
Ecosystem

Mature, but
less AI/ML
focus Growing Large, mature Growing

Backend
OpenCL,
SPIR-V

Multiple
(OpenCL,
SPIR-V
CUDA, HIP,
Level Zero) PTX, SASS

GCN, PTX
(via
HIP-Clang)

DR
AF
T

Performance

Varies
(driver-depend
ent)

Varies
(backend-depe
ndent)

High (optimized
for NVIDIA)

High (optimized
for AMD)

Vendor
Lock-in None None NVIDIA

AMD and
NVIDIA GPUs

Learning
Curve Steeper Moderate Moderate Moderate

Key Use
Cases

Cross-platform
acceleration

Heterogeneous
computing

Deep Learning,
HPC

Deep Learning,
HPC

OpenVX: Accelerating Computer Vision for AI/ML Applications

OpenVX (Open Visual Acceleration) is a Khronos open standard API for computer
vision and machine learning acceleration, developed and maintained by the Khronos
Group. While initially focused on computer vision, OpenVX has evolved to include
significant support for neural network inference, making it increasingly relevant in the AI
and machine learning domains, particularly for edge computing and embedded
systems.

The Key Features of OpenVX for AI/ML are Graph-based Execution where OpenVX
uses a graph-based execution model, which is well-suited for representing and
optimizing neural network architectures.It also provides a hardware-agnostic API,

DR
AF
T

allowing developers to write portable code that can run efficiently on various
accelerators (CPUs, GPUs, DSPs, and dedicated vision/AI processors). OpenVX offers
a set of pre-defined, performance-optimized functions (kernels) for common computer
vision and machine learning operations.The OpenVX Neural Network Extension
provides specific support for deep learning inference, including popular layer types and
operations.

OpenVX in the AI/ML Ecosystem:

1. Edge AI Deployment: OpenVX is particularly well-suited for deploying AI models
on edge devices and embedded systems, where power efficiency and real-time
performance are critical.

2. Computer Vision Integration: It seamlessly combines traditional computer vision
operations with neural network inference, enabling efficient implementation of
complex vision-AI pipelines.

3. Inference Optimization: OpenVX can be used to optimize the inference stage of
neural networks, particularly for vision-related tasks.

4. Hardware Acceleration: Many hardware vendors provide OpenVX
implementations optimized for their specific accelerators, enabling efficient
execution of AI workloads.

Advantages for AI/ML:

1. Performance and Efficiency: The graph-based model allows for global
optimizations, leading to improved performance and energy efficiency.

2. Portability: OpenVX code can run on various hardware platforms without
modification, simplifying deployment across different devices.

3. Safety and Security: OpenVX includes provisions for safety-critical systems,
making it suitable for AI applications in automotive, robotics, and other sensitive
domains.

4. Integration with Vision Systems: It provides a standardized way to integrate AI
capabilities into existing vision processing pipelines.

Challenges and Considerations:

1. Limited to Inference: OpenVX primarily focuses on inference, not training, which
limits its applicability in the full AI development cycle.

2. Ecosystem Maturity: While growing, the ecosystem of OpenVX-based AI tools
and model converters is less mature compared to some other frameworks.

3. Learning Curve: The graph-based programming model may require a different
approach compared to traditional imperative programming.

DR
AF
T

4. Scope Limitation: While powerful for vision-related AI tasks, OpenVX may be less
suitable for non-vision AI applications.

Recent Developments:

1. Enhanced NN Support: Recent versions have significantly improved support for
neural network operations, including more layer types and optimizations.

2. Tensor Support: Improved handling of tensors, essential for modern deep
learning models.

3. Safety-Critical Systems: Ongoing work to enhance OpenVX's suitability for
safety-critical AI applications, particularly in automotive and industrial settings.

Use Cases in AI/ML:

1. Autonomous Vehicles: OpenVX is used in implementing vision and AI systems
for advanced driver-assistance systems (ADAS) and autonomous driving.

2. Smart Cameras: AI-enhanced surveillance and monitoring systems leverage
OpenVX for efficient on-device processing.

3. Industrial Automation: Vision-based quality control and robotic guidance systems
utilize OpenVX for real-time AI inference.

4. Augmented Reality: AR applications use OpenVX to efficiently combine computer
vision and AI for real-time scene understanding and overlay generation.

Feature OpenCL SYCL CUDA HIP OpenVX

Programming
Model

Open standard,
C-based,
recent
extensions has
C++ for
OpenCL

Standard C++
based
(single-source)

C++ with
CUDA
extensions

C++ with HIP
extensions

Graph-based
(C, C++)

Compilation
Runtime
compilation

Ahead-of-Time
(AOT) NVCC compiler

HIPCC
compiler

Depends on
implementation

Hardware
Acceleration

CPUs, GPUs,
FPGAs, etc.

CPUs, GPUs,
FPGAs, etc. NVIDIA GPUs AMD GPUs

GPUs, DSPs,
vision
processors

Flexibility High High Lower High Moderate

Customization
High (custom
kernels)

High (custom
kernels)

High (custom
kernels)

High (custom
kernels) Extension nodes

Community &
Ecosystem

Mature, but
less AI/ML
focus Growing Large, mature Growing

Growing, but
less AI/ML focus

DR
AF
T

Backend
OpenCL,
SPIR-V

Multiple
(OpenCL,
SPIR-V
CUDA, HIP,
Level Zero) PTX, SASS

GCN, PTX
(via
HIP-Clang)

Implementatio
n-dependent

Performance

Varies
(driver-depend
ent)

Varies
(backend-depe
ndent)

High (optimized
for NVIDIA)

High (optimized
for AMD)

High (for vision
tasks)

Vendor
Lock-in None None NVIDIA AMD None

Learning
Curve Steeper Moderate Moderate Moderate Moderate

Key Use
Cases

Cross-platform
acceleration

Heterogeneous
computing

Deep Learning,
HPC

Deep Learning,
HPC

Computer
vision

Vulkan: Unleashing GPU Potential for AI/ML Applications

Vulkan from Khronos, originally designed as a low-overhead, cross-platform 3D
graphics and compute API for games, has been increasingly adopted for
general-purpose computing, including applications in artificial intelligence and machine
learning. While not primarily designed for AI/ML workloads, Vulkan's efficiency and
cross-platform nature make it an attractive option for certain AI/ML tasks, particularly in

DR
AF
T

mobile and embedded systems. Vulkan is platform-agnostic, meaning it can run on
various operating systems, including Windows, Linux, and Android. This cross-platform
capability ensures that AI/ML applications can be developed and deployed across a
wide range of devices.

The Key Features of Vulkan for AI/ML are Cross-Platform Support where Vulkan runs
on a wide range of devices, from high-performance GPUs to mobile processors,
enabling consistent AI deployment across diverse hardware. It has Low-Overhead
Design. Its efficient design allows for better utilization of hardware resources, which is
crucial for performance-intensive AI workloads. Vulkan's compute capabilities, through
compute shaders, can be leveraged for parallel processing in AI/ML algorithms. These
are crucial for performing general-purpose computations on the GPU. Compute shaders
can be used to accelerate neural network training and inference, matrix operations, and
other AI/ML computations.There is Fine-Grained Control where: Vulkan provides
low-level control over hardware, allowing for optimizations specific to AI/ML tasks.
Explicit memory management in Vulkan can be advantageous for optimizing
memory-intensive AI models. This allows developers to optimize data movement and
processing, reducing latency and improving throughput for AI/ML workloads.

Vulkan in the AI/ML Ecosystem:

1. Mobile AI: Vulkan is particularly well-suited for deploying AI models on mobile
devices, where power efficiency and cross-device compatibility are crucial.

2. Edge Computing: Its efficiency makes Vulkan a good choice for AI inference at
the edge, where resources may be limited.

3. Computer Vision: Vulkan's roots in graphics make it naturally suited for computer
vision tasks that combine rendering and AI processing.

4. General-Purpose GPU Computing: Some developers use Vulkan as an
alternative to CUDA or OpenCL for general-purpose GPU computing in AI
applications.

Advantages for AI/ML:

1. Performance: Vulkan's low-overhead design can lead to performance
improvements in AI inference tasks, especially on mobile and embedded
devices.

2. Portability: AI models using Vulkan can potentially run on a wide range of devices
without modification.

3. Integration with Graphics: For AI applications that involve both rendering and
inference (e.g., AR/VR), Vulkan provides a unified API for both tasks.

4. Hardware-Specific Optimizations: Vulkan allows developers to implement
hardware-specific optimizations for AI tasks while maintaining a common API.

DR
AF
T

5. Custom Kernel Development: Developers can write custom compute shaders
tailored to specific AI/ML tasks, optimizing performance for unique use cases.

6. Integration with Other APIs: Vulkan can be integrated with other Khronos APIs
like OpenCL and SYCL, allowing developers to build versatile and
high-performance AI/ML applications.

Challenges and Considerations:

1. Complexity: Vulkan's low-level nature can make it more complex to use
compared to higher-level AI-specific frameworks.

2. Limited AI-Specific Features: Unlike APIs designed specifically for AI, Vulkan
lacks built-in operations for common AI tasks, requiring more from-scratch
implementation.

3. Ecosystem Maturity: The ecosystem of AI tools and libraries for Vulkan is less
developed compared to established AI platforms like CUDA or TensorFlow.

4. Learning Curve: Developers familiar with high-level AI frameworks may find
Vulkan's low-level approach challenging.

Recent Developments:

1. Vulkan 1.2 and Beyond: Recent versions of Vulkan have introduced features that
can benefit AI workloads, such as improved synchronization and more flexible
shader capabilities.

2. Machine Learning Extensions: Some vendors are working on Vulkan extensions
specifically tailored for machine learning operations.

3. Integration with AI Frameworks: Efforts are underway to better integrate Vulkan
with popular AI frameworks, making it easier to use Vulkan as a backend for AI
inference.

Use Cases in AI/ML:

1. Mobile AI Applications: Vulkan is used for deploying efficient AI models in mobile
apps, particularly for tasks like image recognition or real-time video processing.

2. Augmented Reality: AR applications leverage Vulkan for both rendering and
AI-based scene understanding.

3. Game AI: Some game developers use Vulkan for both graphics and AI
computations in game engines.

4. Scientific Computing: Researchers in fields like computational physics or
bioinformatics sometimes use Vulkan for GPU-accelerated AI and data
processing tasks.

DR
AF
T

Feature OpenCL SYCL CUDA HIP OpenVX Vulkan

Programming
Model

Open
standard,
C-based,
recent
extensions
has C++ for
OpenCL

Standard C++
based
(single-sourc
e)

C++ with
CUDA
extensions

C++ with HIP
extensions

C, C++,
Graph-based C++

Compilation
Runtime
compilation

Ahead-of-Tim
e (AOT)

NVCC
compiler

HIPCC
compiler

Depends on
implementatio
n

Ahead-of-Time
(AOT),
Just-in-Time
(JIT)

Hardware
Acceleration

CPUs, GPUs,
FPGAs, etc.

CPUs, GPUs,
FPGAs, etc.

NVIDIA
GPUs AMD GPUs

GPUs, DSPs,
vision
processors GPUs, CPUs

Flexibility High High Lower High Moderate High

Customizatio
n

High (custom
kernels)

High (custom
kernels)

High (custom
kernels)

High (custom
kernels)

Extension
nodes

High (custom
shaders)

Community &
Ecosystem

Mature,
general-purpo
se focus Growing

Large,
mature,
AI/ML focus

Growing,
AI/ML focus

Growing,
vision &
AI/ML focus

Growing,
graphics &
compute focus

Backends
OpenCL,
SPIR-V

Multiple
(OpenCL,
SPIR-V
CUDA, HIP,
Level Zero) PTX, SASS

GCN, PTX
(via
HIP-Clang)

Implementati
on-dependent

SPIR-V,
MoltenVK, etc.

Performance

Varies
(driver-depen
dent)

Varies
(backend-dep
endent)

High
(optimized for
NVIDIA)

High
(optimized for
AMD)

High (for
vision tasks)

Varies (driver
and
implementatio
n)

Vendor
Lock-in None None NVIDIA AMD

Khronos
Group

Khronos
Group

Learning
Curve Steeper Moderate Moderate Moderate Moderate Steeper

Key Use
Cases

General-purp
ose parallel
computing

Heterogeneo
us computing

Deep
Learning,
HPC

Deep
Learning,
HPC

Computer
vision

Graphics,
Compute

Challenges of Compatibility
The rapid evolution of AI hardware accelerators, such as GPUs, TPUs, FPGAs, and
ASICs, has created a dynamic and diverse ecosystem.

DR
AF
T

Diverse Programming Models
Each type of hardware comes with its own set of architectural designs, performance
characteristics, and operational constraints. This diversity, while beneficial in providing
options for specific AI workloads, poses significant challenges for compatibility with AI
software frameworks. Ensuring that frameworks like PyTorch, TensorFlow, JAX, Pallas,
and Triton can fully leverage the capabilities of these accelerators requires substantial
effort in developing and maintaining compatibility layers. These layers must translate
high-level machine learning abstractions into low-level hardware instructions, which
often involves dealing with intricate details of memory management, parallelization, and
hardware-specific optimizations.

Continuous Updates and Optimizations
One of the primary challenges in achieving seamless compatibility is the need for
continuous updates and optimizations. AI hardware manufacturers frequently release
new versions of their accelerators with enhanced features and performance
improvements. Consequently, AI frameworks must constantly evolve to support these
new capabilities. This involves not only updating the core framework but also ensuring
that the vast ecosystem of third-party libraries and tools remains compatible.
Additionally, the differences in programming models across various accelerators add
another layer of complexity. For instance, while GPUs are primarily programmed using
CUDA and Triton, other accelerators like TPUs and FPGAs may use entirely different
programming languages and interfaces, necessitating extensive cross-compatibility
efforts.

Framework-Specific Optimizations
Achieving optimal performance across different hardware accelerators often requires
framework-specific optimizations. These optimizations are not one-size-fits-all; they
must be tailored to the unique characteristics of each accelerator. This process involves
deep technical knowledge of both the hardware and the software stack. Developers
must balance the need for generality in framework design with the need for
hardware-specific performance tuning. For example, TensorFlow's XLA (Accelerated
Linear Algebra) compiler is designed to optimize computations for various hardware
backends, but it requires meticulous configuration and testing to ensure it performs well
on each supported accelerator. Similarly, PyTorch's integration with custom
backends like ROCm for AMD GPUs involves ongoing collaboration between
hardware vendors and the open-source community to maintain and improve
compatibility and performance.

DR
AF
T

Performance Optimization
Performance optimization in the context of AI hardware accelerators involves a
multifaceted approach to ensure that AI models run efficiently and quickly across
diverse platforms.

Hardware-Specific Libraries and Compilers
One of the primary strategies is to leverage hardware-specific libraries and compilers
that are tailored to the unique capabilities of each accelerator. For instance, NVIDIA’s
CUDA library is designed to exploit the parallel processing power of GPUs, enabling
substantial speed-ups in training and inference tasks. Similarly, Google's Tensor
Processing Units (TPUs) benefit from TensorFlow's XLA (Accelerated Linear Algebra)
compiler, which optimizes computations specifically for TPUs. By utilizing these
specialized tools, developers can significantly enhance the performance of their AI
models on targeted hardware.

Mixed Precision Training
Another critical aspect of performance optimization is the implementation of mixed
precision training. This technique involves using lower-precision arithmetic (such as
16-bit floating-point) for certain operations, which can dramatically reduce memory
usage and increase computational speed without significantly impacting model
accuracy. Frameworks like PyTorch and TensorFlow provide built-in support for mixed
precision training, allowing developers to seamlessly integrate this optimization into their
workflows. By taking advantage of hardware capabilities that support lower precision
arithmetic, such as NVIDIA's Tensor Cores, developers can achieve considerable
performance gains. Additionally, mixed precision training often leads to faster data
transfers and reduced latency, further enhancing overall efficiency.

Optimizing Data Pipelines
Furthermore, optimizing data pipelines and minimizing data movement are essential
strategies for maximizing performance across different AI hardware platforms. Efficient
data handling ensures that the accelerators are fed with data at a rate that matches
their processing speed, preventing bottlenecks. Techniques such as data prefetching,
sharding, and parallel I/O operations are commonly employed to optimize data
pipelines.

Memory Hierarchy Optimization
Additionally, placing data closer to the computation units, through techniques like
memory hierarchy optimization and using high-bandwidth memory (HBM), can reduce

DR
AF
T

latency and improve throughput. Frameworks like JAX and Triton enable fine-grained
control over data placement and memory management, allowing developers to tailor
their data handling strategies to the specific requirements of their hardware
accelerators. By focusing on these data optimization strategies, developers can ensure
that their AI models perform efficiently and effectively across a range of hardware
platforms.

The Role of Frameworks
AI frameworks like PyTorch and TensorFlow play a crucial role in abstracting away
hardware complexities and providing developers with high-level APIs. However, they
also face the challenge of maintaining compatibility and performance across the
ever-expanding hardware landscape. This requires ongoing collaboration between
framework developers, hardware vendors, and the open-source community to ensure
that AI models can seamlessly run on various accelerators without sacrificing
performance.

By continuously adapting to new hardware, incorporating optimization techniques, and
collaborating with the wider community, AI frameworks can continue to evolve and
empower developers to harness the full potential of AI hardware accelerators.

Navigating the Ecosystem
When selecting the appropriate AI framework and hardware accelerator for a machine
learning project, developers and researchers should consider several key factors to
ensure optimal performance and efficiency.

Project Requirements
First, the specific requirements of the project should guide the choice: different
frameworks and hardware are better suited to certain types of tasks (e.g., image
processing, natural language understanding, or real-time inference). The size and
complexity of the model, as well as the need for real-time processing, dictate whether
more special-purpose, compute-intensive accelerators like GPUs, TPUs, or NPUs
should be utilized over CPUs.

Hardware Compatibility
Additionally, compatibility between the chosen framework and hardware is crucial; for
example, TensorFlow integrates seamlessly with Google TPUs, while PyTorch has

DR
AF
T

strong support for CUDA-enabled NVIDIA GPUs, and increasing support for AMD
GPUs.

Scalability
Developers should also evaluate the scalability of the framework and hardware,
considering whether the project will scale up to require distributed computing resources.

Ecosystem and Community
The ecosystem and community support surrounding a framework can provide additional
resources and tools, enhancing development efficiency.

Budget and Availability
Lastly, budget constraints and availability of hardware resources must also be factored
in, balancing cost against computational needs and the potential for future expansion.
By carefully assessing these criteria, developers and researchers can effectively match
their project requirements with the most suitable AI framework and hardware
accelerator.

Leading Hardware Accelerator Vendors and Their Strategies
NVIDIA GPU has the advantage as an early mover and widespread adoption. NVIDIA
has created a rich ecosystem of optimized libraries and tools, and is continually
expanding into new markets to create more demand for its GPU hardware. It likely has
a long pipeline of features that it is releasing and enabling as necessary to maintain
momentum and sales. Most AI tools target NVIDIA GPUs first because of its
pervasiveness and flexibility. Also, NVIDIA produces compatible consumer and
data center GPUs, which allows developers to experiment with AI models and
NVIDIA tools on their home systems. The voracious appetite for machine learning
computation has generated supply constraints and high prices.

AMD GPU has chosen to address the AI accelerator market with its own GPU. AMD
continues to expand its software ecosystem. As a GPU-type solution, AMD has
significant alignment with NVIDIA. AMD is able to effectively translate and run most
CUDA code through its HIPify tool. It also is relatively easy for tools targeting NVIDIA
CUDA to add support for AMD ROCm with similar semantics. AMD has created novel
designs for its GPU processors that provide benefits in cost-performance of some
workloads.

DR
AF
T

Intel markets the Gaudi processor, originally developed by Habana, as its AI accelerator
solution. The Gaudi processor differs from the GPU design, with advantages and
disadvantages. It is based on a heterogeneous architecture of fully programmable
Tensor Processing Cores (TPCs). Models in popular frameworks can be migrated to
operate on Gaudi processors.

Google has developed its own architecture for AI, called Tensor Processing Units
(TPUs), based on multiply-add systolic arrays. The TPU architecture is very powerful
and efficient for some operations, but it exchanges that benefit for some limitations in
flexibility. Novel AI model networks don’t always efficiently map to the TPU network.
Google has created very powerful tools in XLA that can be exploited by its TensorFlow,
JAX, and Pallas environments to develop models, optimize for its hardware, and deploy
to its cloud.

Emerging Technologies and tools: Shaping the Future
Triton, IREE (Intermediate Representation Execution Environment), and MLIR
(Multi-Level Intermediate Representation) are cutting-edge tools and libraries designed
to enhance cross-platform compatibility and optimization for diverse AI hardware
accelerators. These technologies are crucial in addressing the complexities involved in
deploying machine learning models across various types of hardware without sacrificing
performance.

Emerging technologies are poised to significantly reshape the compatibility and
performance landscape for machine learning models deployed on diverse AI accelerator
hardware.

Next-Generation Accelerators
As advancements in semiconductor technology lead to more powerful and
energy-efficient accelerators, such as next-generation GPUs, TPUs, and specialized
ASICs, the potential for AI applications expands dramatically.

Quantum and Neuromorphic Computing
Concurrently, developments in quantum computing and neuromorphic computing offer
new paradigms for processing AI workloads, potentially accelerating tasks that are
computationally intensive on traditional architectures.

Software Advancements
Software innovations, including more adaptive and intuitive AI frameworks, are evolving
to harness these hardware advancements seamlessly. These frameworks are likely to

DR
AF
T

incorporate more sophisticated optimization techniques, auto-tuning capabilities, and
cross-platform compatibility features, enabling models to dynamically adapt to the most
effective computing resources available.

Interoperability Standards
Additionally, emerging standards and protocols for AI model interoperability and data
handling (such as ONNX for model exchange) will play crucial roles in enhancing the
synergy between diverse hardware accelerators and software tools, ensuring that AI
deployments can maximize efficiency regardless of the underlying technology stack.

Looking Ahead: A More Unified AI Ecosystem
This integration of emerging technologies will not only improve the performance and
efficiency of AI models but also broaden their applicability across different sectors and
complex problem domains. The future of AI hardware and software compatibility lies in
a more unified ecosystem. As the technology matures, we can expect to see increased
standardization, improved interoperability, and more streamlined workflows for
deploying AI models across diverse hardware.

Best Practices for AI Performance developers and engineers

The machine learning (ML) ecosystem offers a rich toolbox for balancing efficiency,
portability, and performance. However, choosing the right tools requires understanding
project goals and deployment constraints.

Hybrid Optimization

State-of-the-art training and inference systems leverage a combination of techniques for
optimal performance and cost-effectiveness. Critical path kernels often benefit from
hand-written and tuned CUDA code for maximum speed. The “long-tail” of less critical
kernels can be written in high-performance frameworks like Triton and Pallas. These
frameworks provide abstractions and automation that simplify the development process
without sacrificing too much performance.

Optimized Tensor Kernels

Optimized tensor kernels, GEMM, and convolutions also can be achieved through
SYCL, CUDA, and HIP with C++ metaprogramming techniques, like those used in
Eigen. These approaches allow developers to write kernels that can be easily adapted
to different hardware architectures.

DR
AF
T

Optimized Libraries

For broader optimization, vendor-specific libraries like cuBLAS, cuDNN, CUTLASS
(NVIDIA), ZenDNN (AMD), oneDNN (UXL), or SYCL-based libraries (SYCL-BLAS and
SYCL-DNN) provide optimized algorithms for common ML operations. These libraries
are tuned for specific hardware and offer significant performance gains out of the box.
Leveraging these libraries can save development time and effort while ensuring optimal
performance on the target hardware.

Framework-Level Optimization

Additionally, popular frameworks like PyTorch, TensorFlow, JAX, and ONNX all employ
optimizing model graph compilers to generate efficient code and integrate optimized
kernels. These compilers analyze the computation graph, apply optimizations such as
operator fusion and memory layout transformations, and generate optimized code for
the target hardware. This transforms models into efficient representations for execution
on specific hardware.

Runtime Optimization

Runtimes like NVIDIA TensorRT further enhance the efficiency of compiled models by
applying additional optimizations at runtime to complement the entire compiler and
kernel stack. Optimal training and inference requires efficiently scheduling the ballet of
control logic, optimized kernels, and memory moves to ensure that the hardware
resources are performing useful work with minimal latency whenever possible.

The key to achieving the best performance lies in strategically combining these
techniques. Each tool targets a specific aspect of the solution, and the most effective
approach leverages their combined strengths. As the ML ecosystem matures, the focus
is shifting towards tools that support a wider range of hardware.

Future Trends

The path to optimal AI performance involves a strategic combination of hand-optimized
kernels, high-performance frameworks, optimized libraries, graph compilers, and
runtime optimizers. As the ML ecosystem evolves, automation and broader hardware
support will become increasingly important. The UXL Foundation's work towards
unification is a significant step in this direction, promising a more streamlined and
efficient AI development and deployment landscape.

DR
AF
T

Automated Optimization

Future development environments like Mojo and MLIR-based IREE aim to automate
more critical path optimization by generating code directly through compilers, reducing
reliance on pre-generated kernels. This progression extends beyond critical kernels,
extending the state of the art automatic generation of interconnection logic for the entire
codebase.This approach eliminates the need for manual tuning and enables the
creation of highly efficient and scalable ML systems.

Expanding Hardware Support

Creating a truly diverse hardware ecosystem will take time. Research is crucial to bridge
the gap between architecture-specific technologies and compiler-generated code. With
the ability to analyze broader operation windows, make intelligent decisions based on
the characteristics of the target hardware and understand semantic context, these tools
can unlock even greater optimization opportunities.

A More Unified and Open Future
With such a wide range of software technologies required by customers in the field of
AI, there needs to be a solution to enabling all these approaches on processors that
doesn’t require vast amounts of software development effort per-processor. Efforts like
the UXL Foundation, IREE, and Triton are working towards creating open platforms to
streamline the integration of AI software with diverse hardware. By consolidating
compilers, languages, runtimes, and optimized libraries, these initiatives aim to reduce
complexity and enable the fast-moving AI ecosystem to thrive.

Long-term trends and open questions

Open research topics include the limits on the ability of automation to convert a model
to an optimized executable and the extent of diversity in the critical code paths. Is the
development and deployment of advanced AI/ML compiler technology necessary for the
long-term success of the AI/ML industry or is it a tool to help accelerate rapid AI/ML
model experimentation during the current era of AI/ML model design? Will AI/ML
models eventually stabilize to a few kernels that need to be written and optimized once
for each hardware accelerator surrounded by a framework to optimally invoke them?

The AI ecosystem is currently fragmented, but ongoing efforts to bridge the gap
between software and hardware offer hope for a more unified and streamlined future.
By understanding the challenges and embracing emerging solutions, developers can
unlock the full potential of AI across diverse hardware platforms.

DR
AF
T

Conclusion
This white paper not only guides developers through the tangled web of AI hardware
and software but also highlights the importance of this integration in pushing the
boundaries of what AI can achieve. By understanding the intricacies of the ecosystem,
developers can make informed decisions, optimize performance, and drive innovation
forward in their AI projects.

The AI ecosystem, characterized by a plethora of hardware accelerators and software
frameworks, is integral to the rapid advancements in artificial intelligence today.
Understanding this complex landscape is crucial for developers and researchers who
seek to leverage the full potential of AI technologies. The diversity of AI
accelerators—ranging from GPUs and TPUs to FPGAs and ASICs—coupled with the
array of software frameworks such as PyTorch, TensorFlow, JAX, Pallas, and Triton,
presents both opportunities and challenges. Each hardware-software combination offers
unique advantages and requires specific optimizations to achieve optimal performance.
By gaining a deep understanding of these components and their interactions,
developers can make informed decisions that enhance the efficiency and effectiveness
of their AI models, driving innovation across various domains.

Efforts to simplify this complexity are ongoing, with significant strides being made to
create more seamless integration and compatibility within the AI ecosystem.
Frameworks are continuously evolving to support new hardware features, while
initiatives like ONNX and MLIR aim to provide standardized, cross-platform solutions
that bridge the gaps between different technologies. Additionally, the development of
specialized libraries, compilers, and optimization tools is making it easier for developers
to harness the power of diverse accelerators without needing to delve into the intricate
details of each hardware platform. These efforts are crucial in lowering the barriers to
entry for AI development, enabling a broader range of innovators to contribute to and
benefit from the advancements in AI technology.

Looking ahead, the future of AI development is poised for remarkable growth as both
hardware and software continue to evolve. Emerging technologies, such as quantum
computing and neuromorphic processors, hold the promise of further accelerating AI
capabilities and unlocking new applications. Simultaneously, advancements in AI
frameworks and optimization techniques will enhance the ability to leverage these new
hardware innovations effectively. As the ecosystem becomes more integrated and
user-friendly, the potential for AI to transform industries and solve complex problems will
expand exponentially. By staying attuned to these developments and embracing the
tools and strategies designed to navigate the evolving landscape, developers can

DR
AF
T

remain at the forefront of AI innovation, driving the next wave of technological
breakthroughs.

References
Biagio Peccerillo, Mirco Mannino, Andrea Mondelli, Sandro Bartolini,
A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives,
Journal of Systems Architecture,
Volume 129,
2022,
102561,
ISSN 1383-7621,
https://doi.org/10.1016/j.sysarc.2022.102561.
(https://www.sciencedirect.com/science/article/pii/S1383762122001138)

@inproceedings{10.1145/3315508.3329973,
author = {Tillet, Philippe and Kung, H. T. and Cox, David},
title = {Triton: an intermediate language and compiler for tiled neural network computations},
year = {2019},
isbn = {9781450367196},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3315508.3329973},
doi = {10.1145/3315508.3329973},

XLA : Compiling Machine Learning for Peak Performance
author = Amit Sabne
year=2020

https://openxla.org/xla

https://mlir.llvm.org/

https://github.com/iree-org/iree-turbine

https://iree.dev/

R. Bi, T. Xu, M. Xu and E. Chen, "PaddlePaddle: A Production-Oriented Deep Learning Platform
Facilitating the Competency of Enterprises," 2022 IEEE 24th Int Conf on High Performance
Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart
City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), Hainan, China, 2022, pp. 92-99, doi:
10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00046. keywords: {Deep

https://openxla.org/xla
https://mlir.llvm.org/
https://github.com/iree-org/iree-turbine
https://iree.dev/

DR
AF
T

learning;Industries;Visualization;Software architecture;Software algorithms;User
experience;Mathematics;deep learning platform;PaddlePaddle;employ-ees
development;technology growth},

@incollection{NEURIPS2019_9015,
title = {PyTorch: An Imperative Style, High-Performance Deep Learning Library},
author = {Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Bradbury,
James and Chanan, Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and
Antiga, Luca and Desmaison, Alban and Kopf, Andreas and Yang, Edward and DeVito, Zachary
and Raison, Martin and Tejani, Alykhan and Chilamkurthy, Sasank and Steiner, Benoit and
Fang, Lu and Bai, Junjie and Chintala, Soumith},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle
Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {8024--8035},
year = {2019},
publisher = {Curran Associates, Inc.},
url =
{http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learnin
g-library.pdf}
}

https://sycl.tech/

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

https://sycl.tech/

